BELIEVING EPISTEMIC CONTRADICTIONS

Bob beddor $\mathring{\sigma}$ simon goldstein

 $5 \cdot 27 \cdot 2017$

1 The Puzzle

(1) ?? Ari believes the house is empty and might not be.

Fallibility It's sometimes coherent for an agent to believe ϕ and also believe $\Diamond \neg \phi$.

- (2) I believe the movie starts at 7, but $\left\{\begin{array}{l} \text{it might start later} \\ \text{I might be mistaken} \end{array}\right\}$.
- (3) Ari believes the house is empty. But she realizes/recognizes that it might not be.

Uncertain Belief It's possible to coherently believe ϕ without being certain that ϕ .

(4) \checkmark I believe the movie starts at 7, but I'm not certain of it.

Uncertainty-Possibility Link If an agent A is coherent, then if A isn't certain that ϕ , A believes $\Diamond \neg \phi$.

- (5) a. The detective isn't certain that the butler did it.
 - b. ?? However, she doesn't think the butler might not have done it.

No Contradictions It's incoherent to believe $(\phi \land \Diamond \neg \phi)$.

(6) ?? A believes $(\phi \land \Diamond \neg \phi)$.

Compare with:

- (7) # The house is empty and might not be.
- (8) # Suppose/imagine the house is empty and might not be.

(Cf. Veltman 1996; Yalcin 2007.)

2 The Classical Semantics

Definition 1 (Contextualism). $[\![\Diamond \phi]\!]^{c,w} = 1$ iff $B_{c,w} \cap [\![\phi]\!]^c \neq \emptyset$ (where $B_{c,w}$ the modal base determined by c and w).

- (9) The house might not be empty.
- \approx It's consistent with what the c-relevant folks know that the house is not empty. (Kratzer 1981, 2012)

Problem: Has trouble validating No Contradictions.

3 Update Semantics

Dynamic background: The meaning of a sentence is its context change potential.

Let s be a context (a set of worlds). Let α be an atomic sentence, and ϕ and ψ arbitrary sentences. ccording to update semantics, the

interpretation of the language is a function $[\cdot]$ from contexts to contexts, defined recursively as follows:

Definition 2 (Update Semantics).

1.
$$s[\alpha] = s \cap \{w : w(\alpha) = 1\}$$

2.
$$s[\phi \wedge \psi] = s[\phi][\psi]$$

3.
$$s[\neg \phi] = s - s[\phi]$$

4.
$$s[\lozenge \phi] = \{ w \in s | s[\phi] \neq \emptyset \}.$$
 (Veltman 1996)

Fact 1 (Epistemic Contradictions are inconsistent). For any descriptive (non-modal) sentence ϕ and any context s: $s[\phi \land \Diamond \neg \phi] = \emptyset$.

Proof. Let s be an arbitrary context and ϕ an arbitrary descriptive sentence. By Update Semantics, $s[\phi \land \Diamond \neg \phi] = s[\phi][\Diamond \neg \phi]$. Now $s[\phi]$ is guaranteed to only contain ϕ worlds. Hence this set will always fail the test performed by $\Diamond \neg \phi$. So $s[\phi \land \Diamond \neg \phi] = \emptyset$.

Figure 1: Updating with $\phi \land \Diamond \neg \phi$

What's the account of belief?

Suppose that an agent A's doxastic state at a world w is characterized by a set of doxastic alternatives (s_A^w) : these are the worlds compatible with A's information at w. The standard semantics for believes characterizes it in terms of support:

Definition 3 (Support). s supports ϕ ($s \models \phi$) iff $s[\phi] = s$.

Definition 4 (Belief as Support). $s[B_A\phi] = s \cap \{w : s_A^w \models \phi\}$.

This validates **No Contradictions**, but only at the expense of invalidating either **Fallibility**.²

4 Our Proposal

Basic Idea: Integrate a dynamic semantics for epistemic modals with a Lockean account of belief.

On standard Lockean accounts, S believes ϕ iff S assigns a sufficiently high credence to the ϕ -worlds (where 'sufficiently high' will be some threshold less than 1).

Definition 5 (Lockean *belief*).
$$[B_A \phi]^w = 1$$
 iff $Pr_A^w([\phi]) > t$.

This validates **Uncertain Belief**, not our other principles.

We propose to retain Update Semantics, but give a dynamic twist to Lockean belief:

Definition 6 (Contexts). s is a set of possible worlds. Pr_A^w is A's credence function at w. s_A^w is the set of worlds compatible with A's certainties at w.

Definition 7 (Locke Updated). $s[B_A\phi] = \{w \in s | Pr_A^w(s_A^w[\phi]) > t\}.$

Fact 2 (Descriptive Beliefs Are Lockean). For any descriptive (non-modal) sentence ϕ : $s[B_A\phi] = \{w \in s | Pr_A^w(\llbracket \phi \rrbracket) > t\}$.

Proof. By **Locke Updated**, $B_A\phi$ holds at a world w iff A's credence in $s_A^w[\phi]$ exceeds t. To find $s_A^w[\phi]$, we take the set of worlds in A's doxastic state at w (s_A^w) and update this set with ϕ . By **Update Semantics**, when ϕ

¹This semantics was proposed by Hans Kamp, and is defended in Heim 1992; Zeevat 1992; Yalcin 2012; Willer 2013.

²An analogous issue arises for the static semantics of Yalcin 2007, which also validates **No Contradictions** while invalidating **Fallibility**.

is descriptive, this is simply the result of intersecting s_M^w with the ϕ worlds $(s_M^w \cap \llbracket \phi \rrbracket)$. Since every agent assigns credence 1 to the set of worlds in her doxastic state, her credence in $\llbracket \phi \rrbracket$ will equal her credence in $s_M^w \llbracket \phi \rrbracket$.

• Validates Uncertain Belief

Fact 3 (*Might* Beliefs Are Transparent). For any descriptive sentence ϕ : $s[B_A\Diamond \phi] = \{w \in s | s_A^w[\phi] \neq \emptyset\}$.

Proof. By **Locke Updated**, A believes $\Diamond \phi$ at w just in case she gives sufficiently high credence to $s_A^w[\Diamond \phi]$. By **Update Semantics**, $s_A^w[\Diamond \phi]$ is either s_A^w or \emptyset , depending on whether there is a ϕ world in s_A^w . If there is, then $s_A^w[\Diamond \phi] = s_A^w$, to which A assigns credence 1. Otherwise, $s_A^w[\Diamond \phi] = \emptyset$, to which A assigns credence 0. And so A believes $\Diamond \phi$ just in case her doxastic state includes a ϕ world.

- Validates Uncertainty-Possibility Link
- Since Uncertain Belief and Uncertainty-Possibility Link entail Fallibility, also validates Fallibility.

Fact 4 (No Contradictions).
$$\models \neg B_A(\phi \land \Diamond \neg \phi)$$
.

Proof. By **Locke Updated**, A believes $(\phi \land \Diamond \neg \phi)$ at w iff A assigns a sufficiently high credence to $s_A^w[\phi \land \Diamond \neg \phi]$. By **Update Semantics**, $s_A^w[\phi \land \Diamond \neg \phi] = s_A^w[\phi][\Diamond \neg \phi]$. Now $s_A^w[\phi][\Diamond \neg \phi] = \emptyset$ unless $s_A^w[\phi]$ contains at least one $\neg \phi$ world. But $s_A^w[\phi]$ contains only ϕ worlds. So $s_A^w[\phi \land \Diamond \neg \phi] = \emptyset$. Consequently, $Pr_A^w(s_A^w[\phi \land \Diamond \neg \phi]) = 0$.

5 Closure

Multi-Premise Closure If (i) A is rational in believing premises $\phi_1...\phi_n$, (ii) $\phi_1...\phi_n \models \psi$, (iii) A competently infers ψ from these premises, then A's resulting belief in ψ is rational.

- ϕ_1 = the house is empty; ϕ_2 = the house might not be empty.
- Ari rationally believes ϕ_1 , and she rationally believes ϕ_2 .

Figure 2: Locke Updated

• But she can't rationally believe $(\phi_1 \wedge \phi_2)$.

Also a counterexample to:

Bayesian Closure If (i) A is rational, and (ii) $\phi_1...\phi_n \models \psi$, then A's uncertainty in ψ isn't greater than her uncertainty in ϕ_1 + her uncertainty in ϕ_2 , ..., + her uncertainty in ϕ_n .

One possibility is to retain MPC for the descriptive (non-modal) fragment of the language:

Restricted MPC If (i) A is rational in believing descriptive premises $\phi_1...\phi_n$, (ii) $\phi_1...\phi_n \models \psi$, (iii) A competently infers a descriptive conclusion ψ from these premises, then A's resulting belief in ψ is rational.

One way to do so is to impose a 'stability' constraint on belief (Leitgeb 2014).

³Supposing A is coherent: $s_A^w \neq \emptyset$.